skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sezer, Hayri"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent explosions with devastating consequences have re-emphasized the relevance of fire safety and explosion research. From earlier works, the severity of the explosion has been said to depend on various factors such as the ignition location, type of a combustible mixture, enclosure configuration, and equivalence ratio. Explosion venting has been proposed as a safety measure in curbing explosion impact, and the design of safety vent requires a deep understanding of the explosion phenomenon. To address this, the Explosion Venting Analyzer (EVA)—a mathematical model predicting the maximum overpressure and characterizing the explosion in an enclosure—has been recently developed and coded (Process Saf. Environ. Prot. 99 (2016) 167). The present work is devoted to methane explosions because the natural gas—a common fossil fuel used for various domestic, commercial, and industrial purposes—has methane as its major constituent. Specifically, the dynamics of methane-air explosion in vented cylindrical enclosures is scrutinized, computationally and experimentally, such that the accuracy of the EVA predictions is validated by the experiments, with the Cantera package integrated into the EVA to identify the flame speeds. The EVA results for the rear-ignited vented methane-air explosion show good agreement with the experimental results. 
    more » « less